Effects of Additives on Solid State Reaction. III. Effects of Halide Additives on the Formation of MgFe₂O₄

Shiro Shimada, Ryusaburo Furuichi, and Tadao Ishii

Department of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060

(Received July 3, 1975)

The promoting effects of halide additives on the formation of MgFe₂O₄ have been studied on the basis of both kinetic and thermoanalytical data. A mixture of MgO and α -Fe₂O₃ powder containing 10 mol % additive (LiF, NaF, MgF₂, BaF₂, NaCl, or KCl) and that without additive were isothermally heated in a vacuum ($Po_2 = 10^0 - 10^1$ mmHg) in the temperature range 666—1018 °C. High temperature X-ray analysis on MgO-Fe₂O₃ and MgO-Fe₂O₃-additive systems was carried out at a heating rate of 3 °C/min in vacuo, ($Po_2 = 10^{-1}$ mmHg). In the case of fluoride, it seems that the reactions between the fluoride and the reactants, α -Fe₂O₃ or MgO, promote MgFe₂-O₄ formation in the initial stage and that compounds produced by the initial reaction accelerate diffusion in the later stage. The same promoting mechanism seems to be applicable to the case of chloride additives. The interaction between solids of NaCl and α -Fe₂O₃ occurring just before the melting of NaCl seems to initiate MgFe₂O₄ formation.

Solid state reactions are affected by various factors such as impurity or additive, $^{1,2)}$ preparation history of the reacting material³⁾ and atmosphere. $^{4-6)}$ The mechanism for the promoting effects of fluoride and chloride additives on MgAl₂O₄ formation has been systematically discussed from kinetic and thermoanalytical viewpoints. $^{7-9)}$ In the case of fluoride additives, $^{8,9)}$ the formation of MgAl₂O₄ was initiated by the reaction between fluoride and reactants of α -Al₂O₃ and MgO, the cations of fluoride playing an important role in accelerating the reaction in the later stage. In the case of chloride, $^{7,8)}$ the MgAl₂O₄ formation was accelerated via the dissolution process of MgO particle in molten chloride.

We have investigated the promoting effects of the halides of alkali and alkaline earth on ${\rm MgFe_2O_4}$ formation on the basis of both kinetic and thermoanalytical results.

Experimental

Sample. α -Fe₂O₃ samples were prepared by calcining commercial ferric oxide (Kanto Chemical Co., 99% pure) at 1100 °C in the air. The particle size of α -Fe₂O₃ was microscopically determined to be in the range 0.5—2 μ with an average size of 1 μ . MgO particles (av. 0.1 μ) were prepared by a similar way to that described in the previous paper.⁸⁾ Powders of MgO, α -Fe₂O₃ and additive were thoroughly mixed in the molar ratio 1: 1: 0.1. The additives used were LiF, NaF, MgF₂, BaF₂, NaCl, or KCl (Kanto, Wako or Morita Companies), which were stored in a desiccator with silica gel before experiments. The mixtures were pressed into pellets at 150 kg/cm².

DTA and High Temperature X-Ray Diffraction Experiments. DTA experiments on MgO-Fe₂O₃ and MgO-Fe₂O₃-additive systems were carried out in a vacuum ($Po_2=10^{-1}$ mmHg) at a heating rate of 10 °C/min. The temperature was measured with a Pt-Pt13Rh thermocouple. α -Al₂O₃ was used as a standard material. The high temperature X-ray diffraction experiments were carried out in vacuo ($Po_2=10^{-1}$ mmHg) at a heating rate of 3 °C/min.

Isothermal Kinetic Experiments. The pellet was kept on a Pt boat placed in a fused-silica tube connected to a vacuum system ($Po_2=10^{\circ}-10^{1}$ mmHg) and then heated isothermally in the Pt-furnace at 666—1018 °C. The temperature was measured with a Pt-Pt13Rh thermocouple. After heating,

the pellet was quenched at room temperature by withdrawal of the tube from the hot zone of the furnace. Fractional conversion of MgFe₂O₄ was determined by measuring the amount of MgO or $\alpha\text{-Fe}_2\text{O}_3$ remaining after the reaction. The MgO unreacted was extracted by dissolving the pellet in 10% NH₄Cl solution. The Mg²⁺ ion concentration of the solution was then determined by titration with a standard solution of EDTA. This procedure was applied to the products obtained in the experiments of both MgO–Fe₂O₃ and MgO–Fe₂O₃–additive (LiF or NaF) systems. The amount of $\alpha\text{-Fe}_2\text{O}_3$ unreacted was determined by quantitative X-ray analysis by use of NaCl as an external standard. The method was applied to the products in MgO–Fe₂O₃–additive (MgF₂ or BaF₂) system.

Analyis of Fe²⁺. The amount of Fe²⁺ ion in the samples, obtained after isothermal experiments or the high temperature X-ray diffraction experiments, was colorimetrically determined.¹⁰⁾ The solution for colorimetry was prepared by dissolving the sample in concd H₂SO₄. 2M NH₄F and 1% o-phenanthroline were used as masking agent for Fe³⁺ and color-producing agent for Fe²⁺.

Results

Figures 1 and 2 show the rates of $MgFe_2O_4$ formation in $MgO-Fe_2O_3$ and $MgO-Fe_2O_3$ -alkali fluoride systems, and $MgO-Fe_2O_3$ -alkaline earth fluoride system, respectively. The rate of reaction between solid reactant particles is generally governed by either chemical reaction at phase-boundary or diffusion process. ¹¹⁾ The rate equations for the diffusion-controlled reaction have been given by Jander, ¹²⁾ Serin-Ellickson, ¹³⁾ Ginstling-Brounshtein, ¹⁴⁾ and Carter. ¹⁵⁾ It was found that the reaction rate of $MgO-Fe_2O_3$ system is best represented by Jander's equation:

$$[1 - (1 - \alpha)^{1/3}]^2 = kt \tag{1}$$

where α =fractional conversion, k=rate constant, t= reaction time. A part of the data plotted according to Eq. (1) is shown in Fig. 3. We see that the data of all systems fit Jander's equation up to about α =70%. The straight lines obtained for NaF, MgF₂ and BaF₂ additives intersect at t=0 the ordinate with values corresponding to α =20-30%. On the other hand, the lines for non-additive and LiF additive fall on the origin. The activation energies are given in Table 1,

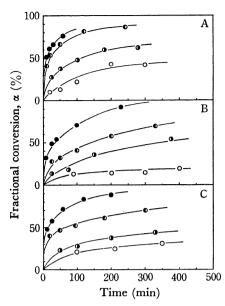


Fig. 1. Formation rate of MgFe₂O₄ for MgO-Fe₂O₃ and MgO-Fe₂O₃-alkali fluoride systems.

A: MgO-Fe₂O₃ system

O: 853 °C, **①**: 915 °C, **①**: 972 °C, **●**: 1018 °C

B: MgO-Fe₂O₃-LiF system

(): 666 °C, (): 715 °C, (): 760 °C, (●: 814 °C

C: MgO-Fe₂O₃-NaF system

O: 754 °C, O: 798 °C, O: 850 °C, O: 901 °C

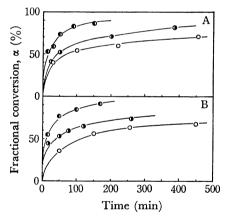


Fig. 2. Formation rate of MgFe₂O₄ for MgO-Fe₂O₃-alkaline earth fluoride system.

A: $MgO-Fe_2O_3-MgF_2$ system

○: 847 °C, ①: 895 °C, ①: 940 °C

B: MgO-Fe₂O₃-BaF₂ system

○: 847 °C, ①: 895 °C, ①: 940 °C

for which the rate constants k were calculated from the results shown in Figs. 1 and 2 by means of Eq. (1). The samples obtained by the isothermal experiments of all systems showed no trace of Fe²⁺.

Figure 4 shows DTA curves of MgO-Fe₂O₃-LiF (curve A) and MgO-Fe₂O₃-NaF (curve B) systems. Curve A has two endothermic peaks at 670 °C and 730 °C. The peak at 730 °C is considered to be due to the formation of the liquid phase, since an exothermic peak was obtained at ca. 730 °C by cooling the sample (curve A) from 930 °C as indicated by arrows. The liquid phase seems to result from melting of LiF.

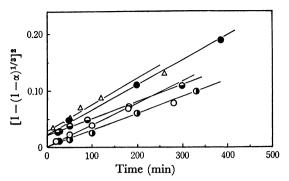


Fig. 3. Plots of [1 - (1-α)^{1/3}]² vs. t according to the Jander's equation.
∴ non-additive (915 °C), ①: LiF (760 °C), ②: NaF

Table 1. Values of activation energy

(850 °C) ●: MgF₂ (895 °C), △: BaF₂ (895 °C)

Additive	E* (kcal/mol)
Non-additive	70± 4
LiF	57± 4
NaF	59± 4
${f MgF_2}$	65 ± 10
BaF_2	$60\pm$ 5

Fig. 4. DTA curves of reaction in MgO-Fe₂O₃-LiF (curve A) and MgO-Fe₂O₃-NaF (curve B) systems. Heating rate: 10 °C/min, sample weight: 400 mg, 1:1:0.1 mixture of MgO, Fe₂O₃, and LiF or NaF in molar ratio.

Similarly, curve B has two endothermic peaks at 670 °C and 930 °C. The peak at 930 °C probably corresponds to melting of NaF. DTA curves of the systems with non-additive, MgF₂ and BaF₂ additives showed no thermal change in the range 20—1000 °C except for the endothermic peak near 670 °C, which showed a reversible one. This peak corresponds to the Curie point of α -Fe₂O₃. ^{16,17)}

Figures 5A-D and 6A-D show the results of high temperature X-ray diffraction analysis for the systems MgO-Fe₂O₃, MgO-Fe₂O₃-NaCl, MgO-Fe₂O₃-KCl, Fe₂O₃-NaCl, MgO-Fe₂O₃-NaF, MgO-Fe₂O₃-MgF₂, and MgO-Fe₂O₃-BaF₂. We see that the amounts of α-Fe₂O₃ and MgO decrease at ca. 700 °C and then MgFe₂O₄ begins to appear at 820 °C (Fig. 5-A). Addition of NaCl (Fig. 5-B) lowers the initiation temperature of MgFe₂O₄ formation by more than 60 °C, as compared with that of the MgO-Fe₂O₃ system. This initiation temperature, 760 °C, is lower

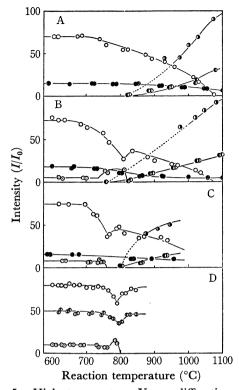


Fig. 5. High temperature X-ray diffraction patterns of the reaction in the systems for MgO-Fe₂O₃ (A), MgO-Fe₂O₃-NaCl (B), MgO-Fe₂O₃-KCl (C), and Fe₂O₃-NaCl (D).

Molar mixing ratio: 1:1:0.1 in MgO: Fe₂O₃: chloride and 1:0.2 in Fe₂O₃: NaCl, heating rate: 3 °C/min.

○: α-Fe₂O₃ (104), ●: MgO (200), ● and ●: Mg-Fe₂O₄ (311) and (200), respectively, B-⊙: NaCl (200), C-⊙: KCl (200), D-⊕, -○ and -⊙: α-Fe₂O₃ (104), α-Fe₂O₃ (110) and NaCl (200), respectively.

than the melting point of NaCl (mp 808 °C). In the case of KCl (Fig. 5-C), MgFe₂O₄ begins to form at ca. 800 °C after melting of KCl (mp 776 °C). The discontinuous changes in the X-ray intensities of α-Fe₂O₃ and NaCl for MgO-Fe₂O₃-NaCl system (Fig. 5-B), and of α-Fe₂O₃ for MgO-Fe₂O₃-KCl system (Fig. 5-C) are observed just before the melting of chloride additives. Such phenomena are also observed in the binary system of NaCl-Fe₂O₃ (Fig. 5-D). Addition of LiF (Fig. 6-A) lowers the initiation temperature of MgFe₂O₄ formation to 700 °C. This temperature is close to that of the liquid phase formation (730 °C) in MgO-Fe₂O₃-LiF system (Fig. 4). In the case of NaF (Fig. 6-B), the initiation temperature is also lowered, the intensity of MgFe₂O₄ increasing abruptly at 1020 °C.

Table 2. The initiation temperature of MgFe₂O₄ formation

Additive	Init. temp (°C)
Non-additive	820
${f LiF}$	700
NaF	725
${ m MgF_2}$	800
BaF_2	900
NaCl	760
KCl	800

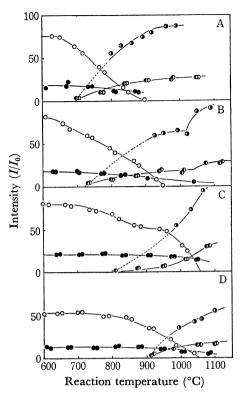


Fig. 6. High temperature X-ray diffraction patterns of the reaction in systems for MgO-Fe₂O₃-LiF (A), MgO-Fe₂O₃-NaF (B), MgO-Fe₂O₃-MgF₂ (C) and MgO-Fe₂O₃-BaF₂ (D). Molar mixing ratio: 1:1:0.1, heating rate: 3 °C/min ○: α-Fe₂O₃ (104), ♠: MgO (200), ♠ and ♠: Mg-Fe₂O₄ (311) and (200), respectively

In the case of MgF₂ (Fig. 6-C), MgFe₂O₄ begins to form at 800 °C. On the other hand, the initiation temperature of the system with BaF₂ (Fig. 6-D) is somewhat higher in comparison with that of other systems. The initiation temperatures of the MgFe₂O₄ formation in all the systems are summarized in Table 2. It is seen that α-Fe₂O₃ in MgO-Fe₂O₃ system disappears at temperatures higher than 1075 °C, but MgO still exists at these temperatures (Fig. 5-A). Similar phenomena are also observed at 1075 °C, 950 °C, 1060 °C, or 1050 °C in MgO-Fe₂O₃-NaCl, -NaF, -MgF₂, or -BaF₂, respectively. The samples obtained after the high temperature X-ray diffraction experiments (Figs. 5-A, -B and 6-A, -B, -C, -D) showed traces of Fe²⁺.

Discussion

It was found⁹⁾ that the lower the melting point of the fluoride additives, the lower the initial temperature of MgAl₂O₄ formation, and that AlF₃ formed by the reaction between fluorides and α-Al₂O₃ initiates the formation of MgAl₂O₄. For the MgO-Fe₂O₃-fluoride systems, a linear correlation of the melting point of the fluoride with the initiation temperature of MgFe₂O₄ formation (Table 1) was also observed (Fig. 7). Deviation of the point for BaF₂ from a straight line may be due to the poor crystallinity of MgFe₂O₄ formed, since although the initial temperature of MgFe₂O₄ formation is at ca. 900 °C (Fig. 6-D), the fractional conversion

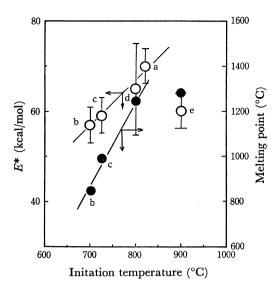


Fig. 7. Plots of the melting points of halide and the E^* values vs. the initiation temperature of MgFe₂O₄ for-

a: non-additive, b: LiF, c: NaF, d: MgF2, e: BaF2

determined from the amount of unreacted α-Fe₂O₃ after the isothermal experiments goes up to $\alpha=36\%$ at 847 °C for 50 min in MgO-Fe₂O₃-BaF₂ system. The correlation in Fig. 7 suggests that the fluoride of lower melting point easily reacts with reactants α-Fe₂O₃ or MgO and that the reaction promotes the MgFe₂O₄ formation in the initial stage, as described for MgO-Al₂O₃-fluoride system. The reaction of fluoride with reactants may result in the formation of compounds such as magnesium or iron fluoride. The formation of such compounds results in the lowering of the melting point of LiF (mp 845 °C) or NaF (mp 992 °C) by more than 100 °C or 60 °C, respectively (Fig. 4). On the other hand, the melting point of the binary systems such as MgO-LiF or -NaF and Fe₂O₃-LiF or -NaF nearly agreed with that of pure LiF or NaF. However, X-ray analysis for the products obtained in the DTA experiments did not indicate the formation of compounds such as magnesium or iron fluoride, or Li-, Na-, or Ba-ferrite. This might be due to too small amounts of the compounds for detection by X-ray analysis.

Reijnen¹⁸⁾ studied the solid state reaction in the MgO-Fe₂O₃ system, and proposed two possible mechanisms of counter diffusion of cations for the formation of MgFe₂O₄ at a given oxygen pressure and temperature, i.e. Mg²⁺ and Fe³⁺, or Mg²⁺ and Fe³⁺ or Fe²⁺ diffuse through the spinel layer. The Fe²⁺ diffusion is accompanied by the diffusion of one cation vacancy and by the transport of oxygen in the gas phase. Carter¹⁹⁾ assumed the mechanism of the counter diffusion of Mg²⁺ and Fe³⁺. Lindner^{20,21)} reported that the activation energy for the self-diffusion of Mg²⁺ in MgO single crystal is 79 kcal/mol and that of Fe3+ in ZnFe2O4 polycrystal is 82 kcal/mol. These can be regarded as values for the volume or grain boundary diffusion. It was found from the results given in Fig. 3 and Table 1 that the formation rate of MgFe₂O₄ in MgO-Fe₂O₃ system is controlled by the diffusion with the activation energy of 70±4 kcal/mol, which is comparable to the above values. Since no Fe²⁺ was found in the samples obtained by the isothermal experiments, it seems that MgFe₂O₄ formation in MgO-Fe₂O₃ system proceeds by the counter diffusion of Mg2+ and Fe3+ and that the volume or grain-boundary diffusion is operative in the formation of MgFe₂O₄. The presence of fluorides lowers the value of the activation energy E^* by 5—13 kcal/mol (Table 1), which might indicate that the fluorides accelerate the diffusion along grain boundary or within bulk. There is a possibility that the dissolution or incorporation of compounds formed by the reaction of fluoride with α-Fe₂O₃ into the MgFe₂O₄ layer facilitates the diffusion of Mg²⁺ or Fe³⁺. It can be considered in the case of LiF or NaF additive that the liquid phase formation at ca. 700 °C or 800 °C accelerates further diffusion by acting as a vehicle of transporting MgO or α-Fe₂O₃. It is observed that the lower the E* value, the lower the initiation temperature of MgFe₂O₄ formation (Fig. 7).

The accelerating mechanism of MgFe₂O₄ formation by the presence of chloride was explained as follows: MgO particles dissolve in molten chloride to spread uniformly over the outer surface of a-Al₂O₃ particles and then MgO particles transport into the inner part of α-Al₂O₃ particles consisting of crystallites. In the MgO-Fe₂O₃-NaCl system, discontinuous changes in X-ray diffraction intensities of α-Fe₂O₃ and NaCl were observed before melting of NaCl, the initial for mation of MgFe₂O₄ beginning simultaneously (Fig. 5-B). The discontinuous changes of X-ray intensities seem responsible for the initial formation of MgFe₂O₄, although no explanation can be given at present. In the case of KCl, MgFe₂O₄ was formed after melting of KCl, although a discontinuous change of α -Fe₂O₃ intensity was also observed (Fig. 5-C). There may be a difference in the action of solids NaCl and KCl on the MgFe₂O₄ formation. It is considered that after chloride melts, the formation of MgFe₂O₄ is promoted by the dissolution process of MgO particles in molten chloride.

It was found in the high temperature X-ray experiments that $\alpha\text{-Fe}_2\mathrm{O}_3$ disappears at temperatures where MgO still exists (Figs. 5 and 6) and that a trace of Fe²⁺ is present in the samples after the experiments. This suggests that a part of Fe3+ is reduced at high temperatures to ferrous ions by the dissolution of α -Pe₂O₃ in MgFe₂O₄ phase at relatively high vacuum (Po₂=10⁻¹ mmHg) in comparison with that in the isothermal experiments ($Po_2=10^0-10^1 \text{ mmHg}$), and that the MgFe₂O₄ formation proceeds by the counter diffusion mechanism of Mg²⁺ and Fe³⁺ accompanied by partial participation of Fe²⁺ in the diffusion, as proposed by Reijnen.¹⁸⁾

References

- 1) B. Delmon, "Reactivity of Solids," ed. by J. S. Anderson, London (1972), p. 567.
- 2) J. Deren, J. Haber, A. Podyorecka, and W. Tur, Z. Anorg. Allg. Chem., 402, 221 (1973).
 3) R. Furuichi, T. Ishii, and K. Kobayashi, J. Thermal
- Anal., 6, 305 (1974).
 - 4) G. Henrich, Z. Electrochem., 58, 183 (1954).
 - H. Schmalzried, Ber. Dtsh. Keram. Ges., 42, 11 (1969).

- 6) K. J. Mackenzie, Trans. Brit. Ceram. Soc., 63, 103 (1969).
- S. Shimada and T. Ishii, Nippon Kagaku Kaishi, 1972, 1234.
- 8) S. Shimada, R. Furuichi, and T. Ishii, Bull. Chem. Soc. Jpn., 47, 2026 (1974).
- 9) S. Shimada, R. Furuichi, and T. Ishii, Bull. Chem. Soc. Jpn. 47, 2031 (1974).
- 10) H. Tamura, K. Goto, T. Yotsuyanagi, and M. Nagayama, Talanta, 21, 314 (1974).
- 11) K. J. Laidler, "Chemical Kinetics," McGraw-Hill, New York (1964), p. 316.
- 12) W. Jander, Z. Anorg. Allg. Chem., 163, 1 (1927).
- 13) B. Serin and R. J. Ellickson, J. Chem. Phys., 9, 742

- (1941).
- 14) A. M. Ginstling and B. J. Brounshtein, J. Appl. Chem., 23, 1327 (1950).
- 15) R. E. Carter, J. Chem. Phys., 34, 2010 (1961).
- 16) M. Iwata, Oyobuturi, 34, 812 (1965).
- 17) S. L. Blum, A. E. Paladino, and L. G. Tubin, Ceram.
- Bull., 36, 175 (1957).18) P. Reijnen, "Reactivity of Solids," ed. by G. M. Schwab, Amsterdam (1965), p. 562.
- 19) R. E. Carter, J. Am. Ceram. Soc., 44, 116 (1961).
- 20) R. Lindner and G. D. Parfitt, J. Chem. Phys., 26, 182 (1957).
- 21) R. Lindner, Z. Electrochem., 59, 967 (1955).